Double the Density by “Rolling in the Fiber”

OFS now offers users more ways to double their optical fiber density by expanding the AccuTube®+ Rollable Ribbon Cable product family. These new cables with 432, 576 and 864 fibers feature rollable ribbons, the newest fiber optic ribbon design from OFS. These cables are available in 100% gel-free, all-dielectric single jacket and light armor constructions.

Rollable ribbon fiber optic cables are one of the most exciting developments in outside plant (OSP) cabling in years. These cables can help users gain substantial time and cost savings with mass fusion splicing. And they also double the fiber density in a given size duct compared to traditional flat ribbon cable designs.

Each OFS rollable ribbon features 12 individual 250 µm optical fibers that are partially bonded to each other at predetermined points. These ribbons can be “rolled” into a flexible and compact bundle that offers the added benefit of improved fiber routing and handling in closure preparation.

This completely gel-free cable design also helps to reduce the time needed for splicing preparation by up to 80%. In addition, these rollable ribbon cables are smaller and weigh at least 35% less than conventional flat ribbon cables. This reduced weight improves cable handling and also helps to relieve the tension placed on installation poles.

The AccuTube+ Rollable Ribbon Cable product portfolio also features cables with 1728 fibers in both single jacket and light armor designs and 3456 fibers in a single jacket construction. All of these cables meet or exceed the requirements of Telcordia GR-20 issue 4.

With its ability to maximize duct utilization, the AccuTube+ Rollable Ribbon Cable is an excellent choice for connecting data centers, and serving as distribution for dense FTTx or mobile networks. To learn more about these cables, go here and here.

Optical Fibers With Embedded Sensors Dissolve After Monitoring Inside the Human Body

Placing sensors inside the human body can help researchers and physicians to understand and treat a variety of medical conditions. However, while implanting a sensing device may be routine, having it remain in the body long enough to perform its job and then be safely removed is an entirely different and significant challenge.

Now a team of Italian and Greek researchers have embedded fiber Bragg gratings, a type of device that reflects certain light wavelengths and can be used as a sensor, inside of dissolvable optical fibers. This new technology may allow the long-term monitoring of the biomechanical and chemical properties of various organs and anatomical features inside the body.

Fiber Bragg gratings placed into optical fibers are routinely used to measure stresses placed on bridges, commercial airliner wings and other areas where detailed, real-time monitoring is critical. The newly-developed fiber Bragg gratings are able to break down, similar to absorbable sutures and, because they have been embedded into optical fibers that are also bioresorbable, they should be safe for use inside the body. Ideally, they would be implanted, left inside the body to perform sensing and eventually disappear completely without the need for removal. (more…)

Catch the Wave with TeraWave® SCUBA 125 Ocean Optical Fiber

OFS expanded its ocean product portfolio by introducing the new TeraWave SCUBA 125 Optical Fiber at the OFC Conference in San Diego, California, held March 12-15.

This latest submarine fiber from OFS is optimally designed to deliver excellent performance for coherent transport submarine systems. The effective area of TeraWave SCUBA 125 Fiber is matched to terrestrial G.654.E fibers for reliable performance from the ocean landing site to terrestrial networks. In addition, this fiber offers outstanding cabling performance in the C- and L-bands along with world-class attenuation.

The effective area of 125 square-microns reduces non-linearities, enabling the launch of higher signal power when compared to G.652 fibers as well as most G.654.B fibers, while the ultra-low attenuation of ≤ 0.158 dB/km (average) reduces signal noise. Together, these capabilities enable the launch of higher signal power into the span and lower amplifier noise. This, in turn, allows higher transmission speeds with more wavelengths over trans-Atlantic distances than ultra-low-loss G.652 fibers. (more…)

THE HEAT IS ON WITH PYROCOAT® K OPTICAL FIBER

With the growing need to accurately monitor processes in harsh environments, optical fibers are becoming an essential element within monitoring systems, both as the communications line and as the sensing element. Optical fiber sensors have been widely adopted and used in pipeline monitoring, perimeter monitoring, heat detection and structural monitoring systems, all of which operate within the typical 45 °C to 85 °C temperature range of a standard optical fiber.

However, as industries push their sensing requirements into environments such as those found in oil wells (for downhole measurement) and nuclear reactors, there is a need for optical fibers that can tolerate these extremely high temperatures and challenging environments.

Specifically developed for harsh temperature sensing and communications environments, the new PYROCOAT K Optical Fiber is up to the challenge. This mechanically-strong fiber features an improved coating that provides excellent thermal stability, enabling wider operating temperatures than other commercially available polymer-coated fibers. In fact, the PYROCOAT K Optical Fiber provides reliable performance even when subjected to extreme, long-term, high temperature exposure. (more…)

Searching Deep Space via Optical Fiber

For the first time, researchers have shown that a stable frequency reference can be reliably transmitted for more than 300 kilometers over a standard fiber optic telecommunications network in order to synchronize two radio telescopes.

In The Optical Society of America’s Optica journal, researchers from a consortium of Australian institutions recently reported this successful transmission between two radio telescopes using an optical fiber link. They also demonstrated that the technique’s performance was superior to using an atomic clock at each telescope.

Stable frequency references, used to calibrate clocks and instruments that make ultra-precise measurements, are usually only available at facilities that use expensive atomic clocks to generate the references. This new technology could help scientists anywhere to access the frequency standard by simply tapping into the telecommunications network.

This new technique required no substantial changes to the rest of the fiber optic network and was easy to implement. Most impressively, the demonstration was performed over a fiber optic network that was transmitting live telecommunications traffic at the same time. By running the experiment on optical fibers carrying normal traffic, the researchers showed that transmitting the stable frequency standard did not affect the data or telephone calls on other channels. (more…)

Breakthrough Fiber Optic Laser May Revolutionize the Detection of Gases for Industry

An international research group has developed a world-first fiber optic technology which may help detect a wide range of gases with unprecedented sensitivity. Published in the journal Optica, the discovery involves the creation of a fiber optic device which consists of an invisible infrared laser coupled to an ultra-broadband supercontinuum generator – two elements that researchers have never managed to combine into a single optical system before. Led by Macquarie University scientists in Australia, the group believes that potential applications for this technology range from breath analysis to air-quality monitoring.

According to lead researcher Dr. Darren Hudson of Macquaraie University, “This new supercontinuum technology is capable of being used to detect an array of gases, including methane, carbon dioxide and nitrous oxide – gases that can be harmful to humans in high levels and have implications in climate change.”

Over the past decade, researchers around the globe have worked to create high-brightness sources of infrared light – an invisible form of light that sits just beyond visible red light in the spectrum. While this work has revolutionized how we detect and measure a staggering range of molecules, the current technology still requires large laser systems, optical laboratory conditions and an expert operator. (more…)

Improving Capacity, Reach and Economics with Coherent Transport

Today, coherent transport technology enables speeds of 40 and 100 Gb/s over legacy fiber networks. However, emerging fundamental limitations in spectral efficiency and un-regenerated reach will soon begin to strain the economics of the internet. Backbone traffic is currently growing at a 30-50 percent compound annual growth rate (CAGR), but consumers are reluctant to pay higher fees. This situation means that both cloud providers and traditional network operators must carry significantly greater traffic to maintain the same revenue. This requirement, in turn, means that technology must achieve the increasingly difficult task of driving the marginal cost-per-bit of long haul transport still lower.

 

Given these growth projections and a slowdown in achievable spectral efficiency, providers have a choice to either install fiber pairs more often or use denser modulation formats. In fact, both will likely be used and current models show that higher optical-to-signal-noise (OSNR) can reduce the cost per bit by avoiding expensive regeneration.

 

A recent white paper by Robert Lingle, Alan McCurdy and Kasyapa Balemarthy of OFS explores how a new generation of low-loss, large-area fibers can help network operators to better manage these emerging limitations while also enabling even higher data rates up to 400 Gb/s and beyond.

 

To access this white paper, please go here. 

How to Speak “Fiber Geek” Article 1 – Bandwidth Drivers and Standards

Over the past 30 years, optical fiber and fiber optic cable have become increasingly durable and user friendly. At the same time, the use of fiber optics has exploded with many more workers now handling both fiber and cable.

 

However, while these individuals may understand the How-Tos of optical fiber, they may lack knowledge of the essential fiber optic Whys. To learn these critical rules, you must become a full-fledged “Fiber Geek.” And, because technology and applications are rapidly evolving, achieving true “fiber geekdom” is an ongoing process.

 

This first in a series of articles will help readers understand some secondary fiber specifications to begin climbing the “Fiber Geek” ladder. In this article, we focus on the continuing demand for bandwidth and how the need for even greater bandwidth is on the horizon. In addition, we also examine ways that this need can be satisfied. Finally, we consider the importance of industry standards in setting network performance levels..

 

To access this article and begin the journey toward becoming a “Fiber Geek,” please go here. 

OFS LaserWave® FLEX WideBand Multimode Fiber Next-Generation Multimode Technology

Data centers and enterprise networks continue to require ever-increasing speeds. Yesterday’s 10 Gbps networks are rapidly being replaced by 40 and 100 Gbps speeds, and 400 Gbps networks are on the horizon. How can today’s network designers best support this increasing demand for bandwidth?

 

TIA has standardized a new multimode fiber to support short wavelength division multiplexing (SWDM). Referred to in the industry as “wideband” multimode optical fiber, this new fiber type extends the ability of conventional OM4 fiber to support multiple wavelengths. Wideband optical fiber will maintain the cost advantages of multimode fiber for short-distance applications by supporting duplex fiber links at speeds up to 100 Gbps and 400 Gbps eight-fiber links.

 

OFS’ LaserWave® FLEX WideBand Multimode Optical Fiber is designed to support today’s high speed 850 nm-based systems and tomorrow’s multi-wavelength systems. Optimized for SWDM, OFS WideBand Optical Fiber is the best choice for short-reach enterprise and data center applications.

 

For the latest WHITE PAPER on LaserWave FLEX WideBand Optical Fiber, please go here.

Let the Ribbon Cables Roll…

Meet two new, totally gel-free fiber optic cables from OFS that feature the company’s exciting new rollable ribbon technology. Using cables with this ribbon design, users can literally double the fiber density in an existing duct.

First, the new AccuTube®+ Rollable Ribbon (RR) Fiber Optic Cable was specifically created to maximize duct utilization for ultra-high fiber count applications.

Available with 1728 and 3456 fibers in a single cable, the AccuTube+ RR Cable offers exceptional carrying capacity, highly efficient and cost-effective mass fusion splicing, and easy individual fiber breakout. This cable is an ideal choice for connecting data centers and serving as distribution for dense Fiber-to-the-Subscriber (FTTx) or mobile networks.

Next, available in 144 and 288 fiber counts, the new AccuRiser™ Rollable Ribbon (RR) Fiber Optic Cable offers the triple benefits of mass fusion splicing, compact size, and excellent flexibility for tough, indoor routing applications. Every element of this new cable was designed to offer high fiber density while helping to speed installation during a new data center or central office deployment. (more…)